Skip to main content

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:  \frac{x+2}{1} = \frac{y-3}{-2} = \frac{z-1}{-2}. Xét hình bình hành ABCD có A(1; 0; 0), C(2; 2; 2), D ∈ d. Tìm tọa độ đỉnh B biết diện tích của hình bình hành ABCD bằng 3√2.

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:  \frac{x+2}{1} = \frac{y-3}{-2} = \frac{z-1}{-2}. Xét hình bình hành ABCD có A(1; 0; 0), C(2; 2; 2), D ∈ d. Tìm tọa độ đỉnh B biết diện tích của hình bình hành ABCD bằng 3√2.


A.
B(3; 3; 5)
B.
B(-3; 3; 5)
C.
B(3; -3; 5)
D.
B(3; 3; -5)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Vì D thuộc đường thẳng d nên D(-2 + t; 3 - 2t; 1 - 2t). Ta có \overrightarrow{AC}(1; 2; 2),             \overrightarrow{AD}(t - 3; -2t + 3; -2t + 1) => [\overrightarrow{AC},\overrightarrow{AD}] = (-4; 4t - 7; -4t + 9)

Do đó SABCD = 3√2  ⇔ SACD = \frac{3\sqrt{2}}{2} ⇔ \frac{1}{2}\left|[\overrightarrow{AC},\overrightarrow{AD}]\right| = \frac{3\sqrt{2}}{2}                       

\frac{1}{2}\sqrt{32t^{2}-128t+146} = \frac{3\sqrt{2}}{2}

⇔ 32t2 -128t + 128 = 0 ⇔ t=2

Suy ra D(0; -1; -3).

Vì ABCD là hình bình hành nên \overrightarrow{AB} = \overrightarrow{DC}  => B(3; 3; 5).

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx