Skip to main content

Trong không gian tọa độ Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x - 4y - 2z = 0 cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác O. Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.

Trong không gian tọa độ Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x - 4y - 2z = 0 cắt các tia

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x - 4y - 2z = 0 cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác O. Tìm tâm và bán kính đường tròn ngoại tiếp tam giác ABC.


A.
I (\frac{4}{9};\frac{14}{9};\frac{3}{9}) và r = IA = \frac{5}{3}√2
B.
I (\frac{1}{9};\frac{6}{9};\frac{8}{9}) và r = IA = \frac{5}{3}√2
C.
I (\frac{4}{9};\frac{11}{9};\frac{5}{9}) và r = IA = \frac{5}{3}√2
D.
I (\frac{5}{9};\frac{16}{9};\frac{5}{9}) và r = IA = \frac{5}{3}√2
Đáp án đúng: D

Lời giải của Luyện Tập 365

(S): (x – 1)2  + (y – 2)2 + (z – 1)2 = 6 có tâm W(1; 2; 1) ,bán kính R = √6.

(S) cắt Ox ,Oy, Oz lần lượt tai A(2; 0; 0), B(0; 4; 0), C(0; 0; 2). Gọi I là tâm đường tròn (A, B, C) thì I giao điểm của d đi qua W và vuông góc mặt phẳng (ABC) với mặt phẳng (ABC). Phương trình mặt phẳng (ABC)

Giải hệ 2x + y + 2z - 4 = 0 và \begin{cases} x=1+2t \\ y=2+t \\ z=1+2t \end{cases} ta được  t = - \frac{2}{9} suy ra

I (\frac{5}{9};\frac{16}{9};\frac{5}{9}) và r = IA = \sqrt{\left ( \frac{5}{9}-2 \right )^{2}+\left (\frac{16}{9}^{2} \right )+\left (\frac{5}{9}^{2} \right )}

=  \frac{5}{3}√2

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}