Skip to main content

Trong không gian tọa độ Oxyz, cho đường thẳng ∆: \frac{x-1}{2} = \frac{y}{1} = \frac{z+2}{-1} và mặt phẳng (P): x - 2y + z = 0. Gọi C là giao điểm của ∆ với (P). M là điểm thuộc ∆. Tính khoảng cách từ M đến (P), biết MC = √6

Trong không gian tọa độ Oxyz, cho đường thẳng∆:

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz, cho đường thẳng ∆: \frac{x-1}{2} = \frac{y}{1} = \frac{z+2}{-1} và mặt phẳng (P): x - 2y + z = 0. Gọi C là giao điểm của ∆ với (P). M là điểm thuộc ∆. Tính khoảng cách từ M đến (P), biết MC = √6


A.
C(-1 ; -1 ; -1) d(M , (P)) = \frac{1}{6}
B.
C(-1 ; -1 ; -1) d(M , (P)) = \frac{1}{\sqrt{6}}
C.
C(-1 ; -1 ; -1) d(M , (P)) = 2
D.
C(-1 ; -1 ; -1) d(M , (P)) = 1
Đáp án đúng: B

Lời giải của Luyện Tập 365

C(1 + 2t ; t ; -2 - t) ∈ ∆

C ∈ (P) ⇒ (1 + 2t) - 2t - 2 - t = 0 ⇒ t = -1 ⇒ C(-1 ; -1 ; -1)

M(1 + 2t' ; t' ; -2 - t')

MC2 = 6 ⇔ (2t' + 2)2 + (t' + 1)2 + (-t' – 1)2 = 6

⇔ 6(t' + 1)2 = 6 ⇔ t' + 1 = ±1

⇔ t' = 0 hay t' = -2. Vậy M1 (1 ; 0 ; -2) ; M2 (-3 ; -2 ; 0)

d(M1 ; (P)) = \frac{|1-0-2|}{\sqrt{6}} = \frac{1}{\sqrt{6}}

d(M2 ; (P)) = \frac{|-3+4+0|}{\sqrt{6}} = \frac{1}{\sqrt{6}}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.