Skip to main content

 Trong không gian  O xyz cho A(3; 1; 1), B(5; 0; 1) và C(1; − 2; −1). Tìm điểm M thuộc mặt phẳng  (O xy) sao cho MC ⊥ AB và diện tích tam giác ABM bằng \frac{3}{2} .  

Trong không gian  O xyz cho A(3; 1; 1), B(5; 0; 1) và C(1; − 2; −1). Tìm

Câu hỏi

Nhận biết

 Trong không gian  O xyz cho A(3; 1; 1), B(5; 0; 1) và C(1; − 2; −1). Tìm điểm M thuộc mặt phẳng  (O xy) sao cho MC ⊥ AB và diện tích tam giác ABM bằng \frac{3}{2} .  


A.
 M(3; 2; 1) và M(\frac{11}{5};\frac{2}{5}; 0)
B.
 M(3; 2; 0) và M(\frac{11}{5};\frac{2}{5}; 0)
C.
 M(3; 2; 0) 
D.
 M(\frac{11}{5};\frac{2}{5}; 0)
Đáp án đúng: B

Lời giải của Luyện Tập 365

Tìm điểm M thuộc mặt phẳng  (O xy

.M ∈(Oxy)⇒ M(x; y; 0); \overrightarrow{CM}=(x-1;y+2;1)\overrightarrow{AB}=(2;-1;0);

\overrightarrow{AM}=(x-3;y-1;-1)

.Theo giả thuyết ta có 

\left\{\begin{matrix} \overrightarrow{CM}.\overrightarrow{AB}=0 & \\ S_{ABM}=\frac{1}{2}.\left | \left [ \overrightarrow{AB}.\overrightarrow{AM}\right ] \right |= \frac{3}{2}& \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2(x-1)-(y-2)=0 & \\ \frac{1}{2}\sqrt{50(0-1)^{2}+[2(y-1)+(x-3)]^{2}}=\frac{3}{2} & \end{matrix}\right.

.Giải hệ tương ứng

.Vậy  M(3; 2; 0) và M(\frac{11}{5};\frac{2}{5}; 0)

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.