Skip to main content

Tìm phần thực phần ảo của số phức: z=\frac{(\sqrt{2}-\sqrt{6}i)^{2010}}{(sin\frac{\pi }{3}-isin\frac{5\pi }{6})^{2011}}

Tìm phần thực phần ảo của số phức: z=

Câu hỏi

Nhận biết

Tìm phần thực phần ảo của số phức: z=\frac{(\sqrt{2}-\sqrt{6}i)^{2010}}{(sin\frac{\pi }{3}-isin\frac{5\pi }{6})^{2011}}


A.
phần thực=2; phần ảo=5
B.
Vậy phần thực = -23014.\sqrt{3}; phần ảo= \sqrt{3}
C.
Vậy phần thực = -\sqrt{3}; phần ảo= -23014
D.
Vậy phần thực = -23014.\sqrt{3}; phần ảo= -23014
Đáp án đúng: D

Lời giải của Luyện Tập 365

z=\frac{(\sqrt{2}-\sqrt{6}i)^{2010}}{(sin\frac{\pi }{3}-isin\frac{5\pi }{6})^{2011}}\frac{[2\sqrt{2}(\frac{1}{2}-\frac{\sqrt{3}}{2}i)]^{2010}}{(cos\frac{\pi }{6}-i.sin\frac{\pi }{6})^{2011}}

=\frac{[2\sqrt{2}(cos(-\frac{\pi }{3})+i.sin(-\frac{\pi }{3}))]^{2010}}{[cos(-\frac{\pi }{6})+i.sin(-\frac{\pi }{6})]^{2011}}

=\frac{(2\sqrt{2})^{2010}[cos(-\frac{2010\pi }{3})+isin(-\frac{2010\pi }{3})]}{cos(-2011\pi )+isin(-2011\pi )}

=(2\sqrt{2})^{2010}.[cos(-\frac{2010\pi }{3})+2011\pi +i.sin(-\frac{2010\pi }{3}+2011\pi )]

= 23015[cos(-\frac{2009\pi }{6})+i.sin(-\frac{2009\pi }{6})]

=23015[cos(-334π-\frac{5\pi }{6})+i.sin(-334π-\frac{5\pi }{6})]

=23015[cos(-2.167π-\frac{5\pi }{6})+i.sin(-2.167π-\frac{5\pi }{6})

=23015[cos(-\frac{5\pi }{6})+i.sin(-\frac{5\pi }{6})]

=23015[-\frac{\sqrt{3}}{2}\frac{1}{2}i] = -23014.\sqrt{3}- 23014.i

Vậy phần thực = -23014.\sqrt{3}; phần ảo= -23014

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).