Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} log_{xy}\frac{x}{y}-log_{x}^{2}y=1\\ log_{2}(x^{2}-y^{2})=1 \end{matrix}\right. (x, y ∈ R)

Giải hệ phương trình:  (x, y ∈ R)

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} log_{xy}\frac{x}{y}-log_{x}^{2}y=1\\ log_{2}(x^{2}-y^{2})=1 \end{matrix}\right. (x, y ∈ R)


A.
(x; y) = (√3; 1)
B.
(x; y) = (√3; -1)
C.
(x; y) = (-√3; 1)
D.
(x; y) = (-√3; -1)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Điều kiện 0 < xy ≠ 1, 0 < x ≠ 1 và y > 0, x2 > y2 (*)

+ Với y = 1 thay vào hệ đã cho ta được  x= 3 ⇔ x = √3 (Do (*))

+Với 0 < y ≠ 1 và x, y thỏa mãn điều kiện (*) ta có phương trình :

log_{xy}\frac{x}{y}-log_{x}^{2}y = 1

\dpi{100} log_{xy}x-log_{xy}y-log^{2}_{x}y=1 \Leftrightarrow \frac{1}{log_{x}xy}-\frac{1}{log_{y}xy}-log^{2}_{x}y=1

⇔ \frac{1}{1+log_xy}-\frac{1}{1+log_yx}-log_x^{2}y = 1

Đặt t = logxy khi đó ta được phương trình: 

\frac{1}{1+t}-\frac{t}{t+1}  - t2 = 1 ⇔ t3 + t2 + 2t = 0 ⇔ t = 0 ⇔ y = 1 (loại)

Vậy hệ đã cho có nghiệm duy nhất (x; y) = (√3; 1)

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.