Skip to main content

Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh a, \widehat{BAD} =60^{\circ}. Gọi M là trung điểm cạnh AA', N là trug điểm cạnh CC'. Chứng minh bốn điểm B', M, D, N cùng thuộc 1 mặt phẳng. Hãy tính độ dài cạnh AA' theo a để tứ giác B'MDN LÀ HÌNH VUÔNG.

Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh a,

Câu hỏi

Nhận biết

Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình thoi cạnh a, \widehat{BAD} =60^{\circ}. Gọi M là trung điểm cạnh AA', N là trug điểm cạnh CC'. Chứng minh bốn điểm B', M, D, N cùng thuộc 1 mặt phẳng. Hãy tính độ dài cạnh AA' theo a để tứ giác B'MDN LÀ HÌNH VUÔNG.


A.
AA' = 2a\sqrt{2}.
B.
AA' = \frac{a\sqrt{2}}{2}.
C.
AA' = a\sqrt{3}
D.
AA' = a\sqrt{2}.
Đáp án đúng: D

Lời giải của Luyện Tập 365

 

Chứng minh B', M, D, N  cùng thuộc một mặt phẳng:

Ta có AMC'N, ABC'D' là các hình bình hành nên MN, AC' và BD' cắt nhau tại trung điểm mỗi đường.

Do BD' và MN cắt nhau tại trung điểm mỗi đường nên B'MDN là hình bình hành. Vậy B', M, D, N cùng thuộc một mặt phẳng.

Tính AA'. Đặt AA' = 2x. Ta có:

MB = \sqrt{MA^{2}+AB^{2}} = \sqrt{x^{2}+a^{2}}

BN = \sqrt{BC^{2}+CN^{2}} = \sqrt{a^{2}+x^{2}}

Suy ra MB = BN hay B'MDN là hình thoi. Để B'MDN là hình vuông thì điều kiện cần và đủ là tam giác BMN vuông tại B hay MN2 = MB2 + BN2     (1).

Ta có AMNC là hình bình hành nên: MN = AC = \sqrt{3}a

Do đó: (1) <=> 3a2 = 2(a2 + x2) <=> x = \frac{a}{\sqrt{2}}. Vậy AA' = 2x =a. \sqrt{2}

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).