Skip to main content

Cho lăng trụ ABCD.A1B1C1D1 có đáy ABCD là hình chữ nhật. AB = a, AD = a√3. Hình chiếu vuông góc của điểm A1 trên mặt phẳng (ABCD) trùng với giao điểm AC và BD. Góc giữa hai mặt phẳng (ADD1A1) và (ABCD) bằng 600. Tính thể tích khối lăng trụ đã cho và khoảng cách từ điểm B1 đến mặt phẳng (A1BD) theo a.

Cho lăng trụ ABCD.A1B1C1D1 c

Câu hỏi

Nhận biết

Cho lăng trụ ABCD.A1B1C1D1 có đáy ABCD là hình chữ nhật. AB = a, AD = a√3. Hình chiếu vuông góc của điểm A1 trên mặt phẳng (ABCD) trùng với giao điểm AC và BD. Góc giữa hai mặt phẳng (ADD1A1) và (ABCD) bằng 600. Tính thể tích khối lăng trụ đã cho và khoảng cách từ điểm B1 đến mặt phẳng (A1BD) theo a.


A.
V_{ABCD.A_{1}B_{1}C_{1}D_{1}} =  \frac{3a^{3}}{3} B2H = \frac{a\sqrt{3}}{2}
B.
V_{ABCD.A_{1}B_{1}C_{1}D_{1}} = \frac{3a^{3}}{2} B2H = \frac{a}{2}
C.
V_{ABCD.A_{1}B_{1}C_{1}D_{1}} =  \frac{3a^{3}}{2} B2H = \frac{a\sqrt{3}}{2}
D.
V_{ABCD.A_{1}B_{1}C_{1}D_{1}} = \frac{3a^{2}}{2} B2H = \frac{a\sqrt{3}}{2}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Ta có OI = \frac{a}{2}, ∆OIA1 là nửa tam giác đều

⇒ A1I = 2OI = a ⇒ OA1\frac{a\sqrt{3}}{2}

⇒ V_{ABCD.A_{1}B_{1}C_{1}D_{1}} = a.a√3.\frac{a\sqrt{3}}{2} = \frac{3a^{3}}{2}

Gọi B2 là điểm chiếu của B1 xuống (ABCD). Vậy d(B1 , (A1BD)) chính là đường cao vẽ từ B2 của ∆OB2B

S_{(OBB_{2})} = \frac{1}{2}a.\frac{1}{2}a√3 = \frac{a^{2}\sqrt{3}}{4} = \frac{1}{2}OB.B2H

⇒ B2H = 2.\frac{a^{2}\sqrt{3}}{4}.\frac{1}{a} = \frac{a\sqrt{3}}{2}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).