Skip to main content

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. . Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa 2 đường thẳng AB và CB’.

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, cạnh đáy AB bằn

Câu hỏi

Nhận biết

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. . Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa 2 đường thẳng AB và CB’.


A.
V = \frac{a^{3}}{\sqrt{3}}; d(AB, CB’) \frac{a}{3}
B.
V = \frac{2a^{3}}{\sqrt{3}}; d(AB, CB’) \frac{a}{2}
C.
V = \frac{a^{3}}{\sqrt{3}}; d(AB, CB’) = a
D.
V = \frac{a^{3}}{\sqrt{3}}; d(AB, CB’) \frac{a}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi M là trung điểm của AB. Tam giác CAB cân tại C suy ra AB ⊥ CM.

Mặt khác AB ⊥ CC' => AB ⊥ (CMC') => \widehat{CMC'}= 600. Gọi V là thể tích khối lăng trụ ABC.A'B'C' thì V = SABC.CC’

Ta có CM = BM.tan30\frac{a}{\sqrt{3}} => SABC \frac{1}{2} CM.AB= \frac{a^{2}}{\sqrt{3}}

CC'= CM.tan 600\frac{a}{\sqrt{3}} . \sqrt{3} = a

=> V = \frac{a^{2}}{\sqrt{3}}.a = \frac{a^{3}}{\sqrt{3}}

Mặt phẳng (CA'B') chứa CB' và song song AB

nên d(AB, CB’) = d(AB; (CA’B’))= d(M; (CA’B’)) = MH, với N là trung điểm của A'B' và H là hình chiếu của M trên CN

Do MH ⊥ CN, MH ⊥ A'B' => MH ⊥ (CA'B')

Tam giác CMN vuông tại M nên \frac{1}{MH^{2}}= \frac{1}{MC^{2}}+ \frac{1}{MN^{2}}=\frac{4}{a^{2}}

=> d(AB,CB’) = MH = \frac{a}{2}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.