Skip to main content

Cho hình chóp S.ABCD đáy ABCD là hình thoi, hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ O đến mặt phẳng (SAB) bằng \frac{a\sqrt{3}}{4}. Tính thể tích khối chóp S.ABCD theo a.

Cho hình chóp S.ABCD đáy ABCD là hình thoi, hai đường chéo AC = 2√3a, BD = 2a và cắt nhau

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD đáy ABCD là hình thoi, hai đường chéo AC = 2√3a, BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ O đến mặt phẳng (SAB) bằng \frac{a\sqrt{3}}{4}. Tính thể tích khối chóp S.ABCD theo a.


A.
\frac{\sqrt{2}a^{3}}{3}
B.
\frac{\sqrt{3}a^{3}}{3}
C.
\frac{\sqrt{3}a^{3}}{2}
D.
\frac{\sqrt{3}a^{3}}{6}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Từ giả thiết ta có tam giác ABO vuông tại O và AO = a√3, BO = a, do đó \widehat{ABD} = 600. Hay ∆ABD đều. Do (SAC); (SBD) ⊥ (ABCD) nên giao tuyến của chúng SO ⊥ (ABCD)

Gọi H là trung điểm của AB, K là trung điểm của HB ta có DH ⊥ AB và DH = a√3

OK // DH và OK = \frac{1}{2}DH = \frac{a\sqrt{3}}{2} => OK ⊥ AB => AB ⊥ (SOK)

Gọi I là hình chiếu của O lên SK => OI ⊥ (SAB) hay OI = \frac{a\sqrt{3}}{4}

Tam giác SOK vuông tại O, OI là đường cao => \frac{1}{OI^{2}} = \frac{1}{OK^{2}} + \frac{1}{SO^{2}}

=> SO = \frac{a}{2}

Diện tích đáy SABCD = 4SABO = 2OA.OB = 2√3a2

Đường cao của hình chóp SO = \frac{a}{2}

Thể tích khối chóp S.ABCD: VS.ABCD = \frac{1}{3}SABCD.SO= \frac{\sqrt{3}a^{3}}{3} (đvtt)

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.