Skip to main content

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, góc \widehat{BAC} = 600 , cạnh AB = a√3 , SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M thuộc đường thẳng BC sao cho \overrightarrow{MB}=-\frac{1}{3}\overrightarrow{CB} . Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng SA và BC biết đường thẳng SM tạo với mặt phẳng đáy một góc 600. 

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, góc  = 600 , cạnh AB = a√3 , SAC

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, góc \widehat{BAC} = 600 , cạnh AB = a√3 , SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M thuộc đường thẳng BC sao cho \overrightarrow{MB}=-\frac{1}{3}\overrightarrow{CB} . Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng

SA và BC biết đường thẳng SM tạo với mặt phẳng đáy một góc 600


A.
 VS.ABC \frac{3a^{3}\sqrt{7}}{2};  d(BC; SA)= 2\frac{a\sqrt{607}}{29}
B.
 VS.ABC \frac{3a^{3}\sqrt{7}}{2};  d(BC; SA)= \frac{a\sqrt{609}}{29}
C.
 VS.ABC \frac{3a^{3}\sqrt{7}}{2};  d(BC; SA)= 2\frac{a\sqrt{609}}{29}
D.
 VS.ABC \frac{a^{3}\sqrt{7}}{2};  d(BC; SA)= 2\frac{a\sqrt{609}}{29}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi H là trung điểm cạnh AC, khi đó SH AC , do (SAC) ⊥ (ABC)  nên  SH ⊥ (ABC)

Trong tam giác ABC ta có BC = AB.tan600 = 3a , AC = 2a√3

Từ giả thiết  \overrightarrow{MB}=-\frac{1}{3}\overrightarrow{CB}  suy ra CM = 4a và góc \widehat{SMH} = 600

Trong tam giác MHC ta có: MH2 = CM2 + CH2 – 2.CM.CH.cosMCH = a√7

Xét tam giác vuông SMH SMH ta có SH = HM.tan600 = a√21

Vậy VS.ABC = \frac{1}{6}AB.BC.SH = \frac{3a^{3}\sqrt{7}}{2} (đvtt)

 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật.

Khi đó AD//BC nên BC // (SAD), gọi N là trung điểm BC ta có d(BC,SA)= d(BC,(SAD))=d(N,(SAD))= 2d(H,(SAD))

Gọi E là trung điểm AD, K là hình chiếu vuông góc của H lên SE ta có:

(SAD) ⊥ (SHE) và do đó HK⊥ (SAD) 

Từ đó suy ra d(H,(SAD))= HK

Trong tam giác SHE ta có: \frac{1}{HK^{2}}=\frac{1}{HE^{2}}+\frac{1}{HS^{2}}=\frac{29}{21a^{2}} => HK = \frac{a\sqrt{609}}{29}

Vậy d(BC; SA)= 2\frac{a\sqrt{609}}{29}

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}