Skip to main content

Cho hình chóp S.ABC có đáy là tam giác vuông tại A và AB = 2a, AC = 2a√3. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là trung điểm H của cạnh AB. Góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 300. Tính thể tích của khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC)

Cho hình chóp S.ABC có đáy là tam giác vuông tại A và AB = 2a, AC = 2a√3. Hình chiế

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có đáy là tam giác vuông tại A và AB = 2a, AC = 2a√3. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là trung điểm H của cạnh AB. Góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 300. Tính thể tích của khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC)


A.
V = \frac{a^{2}\sqrt{3}}{3} ; d(B ; (SAC)) = \frac{2a\sqrt{5}}{5}
B.
V = 1; d(B; (SAC)) = \frac{2a\sqrt{5}}{5}
C.
V = \frac{a^{3}\sqrt{3}}{3} ; d(B; (SAC)) = 1
D.
V = \frac{a^{3}\sqrt{3}}{3}; d(B; (SAC)) = \frac{2a\sqrt{5}}{5}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Diện tích ∆ABC là:

SABC \frac{1}{2}.AB.AC = 2a2√3   

Trong (ABC): kẻ HK ⊥ BC tại K => BC ⊥ (SHK)

Từ giả thiết ta có:  \widehat{SKH} = 300 

BC = \sqrt{AB^{2}+AC^{2}} = 4a

sin \widehat{ABC}=\frac{AC}{BC}=\frac{HK}{HB}=\frac{\sqrt{3}}{2} => HK = \frac{a\sqrt{3}}{2}

Trong ∆SHK có:

SH = HK.tan\angleSKH = \frac{a}{2}

Thể tích của khối chóp là:

V = \frac{1}{3}.SH.SABC\frac{a^{3}\sqrt{3}}{3} (đvtt)

Ta có AC vuông AB, AC vuông SH => AC vuông (SAB) => (SAB) vUÔNG (SAC)

Trong (SAB) kẻ HD ⊥ SA tại D. Ta có \frac{1}{DH^{2}}=\frac{1}{HA^{2}}+\frac{1}{HS^{2}}

=> HD =  \frac{a\sqrt{5}}{5}

Do H là trung điểm của AB và BH ∩ (SAC) = A

=> d(B; (SAC)) = 2d(H; (SAC)) = \frac{2a\sqrt{5}}{5}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}