Skip to main content

Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

Cho các số thực x,y thỏa mãn x

Câu hỏi

Nhận biết

Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.


A.
7
B.
9
C.
6
D.
-6
Đáp án đúng: B

Lời giải của Luyện Tập 365

Áp dụng bất đẳng thức ab≤ \frac{a^{2}+b^{2}}{2} với mọi a,b ta có 

x\sqrt{2-y^{2}}\frac{x^{2}+2-y^{2}}{2}, y\sqrt{2-x^{2}}\frac{y^{2}+2-x^{2}}{2}.               (*)

Suy ra 2 = x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} ≤ 2.

Do đó (*) xảy ra dấu đẳng thức.

Điều đó tương đương với x = \sqrt{2-y^{2}} và y = \sqrt{2-x^{2}}

Suy ra x, y ≥ 0 và x2 + y2 = 2. Đặt t = x + y.

Khi đó 0 ≤ t ≤ \sqrt{2(x^{2}+y^{2})} = 2.

Ta có : P  =(x+y)3 + 12(x+y) - 12xy - 12 + √xy

            ≤(x+y)3 + 12(x+y) - 12\frac{(x+y)^{2}-(x^{2}+y^{2})}{2} - 12 + \frac{x+y}{2}

            ≤ t3 + 12t - 6t2 + 1 = t3 - 6t2 + 12 t+ 1

Xét hàm f(t)=t3-6t2+12t+1 trên \begin{bmatrix}0;2\end{bmatrix}. Ta có

            f'(t) = 3t2 - 12t + 12 =3(t-2)^{2} >0, với mọi t\epsilon(0;2).

Suy ra f(t) đồng biến trên \begin{bmatrix}0;2\end{bmatrix}. Do đó f(t)≤ f(2) = 9. Suy ra P ≤ 9

Dấu đẳng thức xảy ra khi ra t = 2 hay x = y = 1

Vậy giá trị lớn nhất của P là 9, đạt khi x = y = 1.

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phâ

    Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phân giác trong kẻ từ cùng một đỉnh B có phương trình lần lượt là  d1: 2x + y - 3 = 0, d2: x  + y - 2 = 0. Điểm M(2;1) thuộc đường thẳng AB, đường tròn ngoại tiếp tam giác ABC có bán kính bằng √5. Biết đỉnh A có hoành độ dương, hãy xác định tọa độ các đỉnh của tam giác ABC.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.