Skip to main content

Cho các số dương x, y, z thỏa mãn x2 + y2 + z2 = 3. Tìm giá trị lớn nhất của biểu thức: P = (  \frac{x+2\sqrt{xy}+z}{x+1} )2 + ( \frac{y+2\sqrt{yz}+x}{y+1} )2 + (\frac{z+2\sqrt{zx}+y}{z+1}  )2 .

Cho các số dương x, y, z thỏa mãnx2 + y2 + z

Câu hỏi

Nhận biết

Cho các số dương x, y, z thỏa mãn x2 + y2 + z2 = 3. Tìm giá trị lớn nhất của biểu thức:
P = (  \frac{x+2\sqrt{xy}+z}{x+1} )2 + ( \frac{y+2\sqrt{yz}+x}{y+1} )2 + (\frac{z+2\sqrt{zx}+y}{z+1}  )2 .


A.
x = y = z = 1
B.
x = 1, y =2 , z = 1
C.
x = y = z = -1
D.
x = -1, y = 2 ,z = -1
Đáp án đúng: A

Lời giải của Luyện Tập 365

Chú ý rằng ,với 2 vectơ \overrightarrow{u},\overrightarrow{v} ta có \left | \overrightarrow{u}.\overrightarrow{v} \right | ≤  \left|\overrightarrow{u}\right.|\left|\overrightarrow{v}\right|

Áp dụng bất đẳng thức trên cho 2 vectơ \overrightarrow{u} =(x; \sqrt{2x};1) , \overrightarrow{v}(1; \sqrt{2y}; z)

ta được (x + 2\sqrt{xy} + z2) = (x.1 + \sqrt{2x}\sqrt{2y} + 1.z)2≤ (x2 + 2x + 1)(1 + 2y + z2)

Suy ra : (  \frac{x+2\sqrt{xy}+z}{x+1} )2  ≤  1+ 2y +  z2

Tương tự ta thu được: ( \frac{y+2\sqrt{yz}+x}{y+1} )2   ≤  1 + 2z + x2

  (\frac{z+2\sqrt{zx}+y}{z+1}  )2  ≤  1 + 2x + y2.

Từ đó ta đạt được: 

P ≤  3 + 2(x + y + z) + x2 + y2+ z2 ≤  6 + 2 \sqrt{3\left(x^{2}+y^{2}+z^{2}\right)} = 12

Dấu đẳng thức xảy ra khi x = y = z = 1. Vậy giá trị lớn nhất của P là 12, đạt khi x = y = z = 1

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.