Cho hình chóp tam giác đều S.ABC với SA = 2a, AB = a. Gọi H là hình chiếu vuông góc của điểm A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng (ABH). Tính thể tích khối chóp S.ABH theo a.
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông, tam giác A’AC vuông cân, A’C = a. Tính thể tích khối tứ diện ABB’C’ và khoảng cách từ A tới mặt phẳng (BCD’) theo a.
Cho hình chóp S.ABC có đáy ABC là một tam giác vuông cân AB = AC = a. Mặt bên (SBC) vuông góc với mặt đáy (ABC), hai mặt bên còn lại đều tạo với đáy một góc 450. a.Chứng minh rằng hình chiếu vuông góc của S xuống đáy (ABC) là trung điểm cạnh BC. b.Tính thể tích hình chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a, hai mặt phẳng (SAB), (SAC) cùng vuông góc với đáy. Gọi M là trung điểm của AB, mặt phẳng qua SM và song song với BC, cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 600. Tính thể tích khối chóp S.BCNM và khoảng cách giữa hai đường thẳng AB và SN theo a.
Cho hình chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng h. Tính thể tích hình lập phương có một mặt thuộc mặt đáy của hình chóp còn mặt đối diện có các đỉnh nằm trên cạnh của hình chóp. Với hình chóp S.ABCD (hình bên), ta có AB = a, SO = h.
Cho lăng trụ ABCD.A1B1C1D1 có đáy ABCD là hình chữ nhật, AB = a, AD = a√3. Hình chiếu vuông góc của điểm A1 trên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Góc giữa hai mặt phẳng (ADD1A1) và (ABCD) bằng 600. Tính thể tích khối lăng trụ đã cho và khoảng cách từ B1 đến mặt phăng (A1BD) theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh B và SA⊥(ABC), SB = a. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng α. a.Tính thể tích khối chóp S.ABC theo a và α. b. Hãy tìm α để thể tích khối chóp S.ABC lớn nhất.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3a, BC = 4a, mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = 2a√3, = 300. Tính thể tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy . Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm A đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, cạnh bên SA vuông góc với đáy , = 1200, M là trung điểm của cạnh BC và = 450. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách từ điểm D đến mặt phẳng (SBC).
Cho lăng trụ đều ABC.A’B’C’ có AB = a và đường thẳng A’B tạo với đáy một góc bằng 600. Gọi M và N lần lượt là trung điểm của các cạnh AC và B’C’. Tính theo a thể tích của khối lăng trụ ABC.A’B’C’ và độ dài đoạn MN.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, = 300, SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ C đến mặt phẳng (SAB).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a; mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = 2a√3 và = 300. Tính thể tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a
Cho lăng trụ ABCD.A1B1C1D1 có đáy ABCD là hình chữ nhật. AB = a, AD = a√3. Hình chiếu vuông góc của điểm A1 trên mặt phẳng (ABCD) trùng với giao điểm AC và BD. Góc giữa hai mặt phẳng (ADD1A1) và (ABCD) bằng 600. Tính thể tích khối lăng trụ đã cho và khoảng cách từ điểm B1 đến mặt phẳng (A1BD) theo a.
Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết = 1200, tính thể tích của khối chóp S.ABC theo a.