Cho hình chóp tam giác đều S.ABC với SA = 2a, AB = a. Gọi H là hình chiếu vuông góc của A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng (ABH). Tính thể tích của khối chóp S.ABH theo a.
Cho hình hộp đứng ABCD.A’BC’D’ có đáy là hình vuông, tam giác A’AC vuông cân, A’C = a. Tính thể tích của khối tứ diện ABB’C’ và khoảng cách từ điểm A đến mặt phẳng (BCD’) theo a.
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho HA = 2HB. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 600. Tính thể tích của khối chóp S.ABC và tính khoảng cách giữa hai đường thẳng SA và BC theo a.
Cho hình chóp S.ABC có SA=3a (a>0); SA tạo với đáy (ABC) một góc bằng
600 . Tam giác ABC vuông tại B, . G là trọng tâm tam giác ABC. Hai mặt phẳng (SGB) và (SGC) cùng vuông góc với mặt phẳng (ABC). Tính thể tích khối chóp S.ABC theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy , SA = SB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 450. Tính theo a thể tích của khối chóp S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = a; hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là điểm H thuộc đoạn AC , AH = . Gọi CM là đường cao của tam giác SAC. Chứng minh M là trung điểm của SA và tính thể tích khối tứ diện SMBC theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a, SA vuông góc với mặt phẳng (ABC) , góc giữa hai mặt phẳng (SBC) và (ABC) bằng 300. Gọi M là trung điểm của cạnh SC. Tính thể tích của khối chóp S.ABM theo a.
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, cạnh huyền bằng 3a, G là trọng tâm tam giác ABC, biết SG(ABC), SB=. Tính thể tích khối chóp S,ABC và khoảng cách từ B đến (SAC) theo a.
Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác vuông tại B, AB = a, AA' = 2a, A'C = 3a. Gọi M là trung điểm của đoạn thẳng A'C', I là giao điểm của AM và A'C. Tính theo a thể tích khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, 2AC=BC=2a. Mặt phẳng (SAC) tạo với mặt phẳng (ABC) một góc . Hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của cạnh BC. Tính thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng AH và SB.
Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a>0 và góc BAD=góc DAA'=góc A'AB=60o. Gọi M,N lần lượt là trung điểm của AA', CD. Chứng minh MN//(A'C'D') và tính cosin của góc tạo bởi hai đường thẳng MN và B'C
Cho hình lăng trụ tam giác ABC.A'B'C' có BB' = a, góc giữa đường thẳng BB' và mặt phẳng ( ABC ) bằng 600 ; tam giác ABC vuông tại C và = 600. Hình chiếu vuông góc của điểm B' lên mặt phẳng ( ABC ) trùng với trọng tâm của tam giác ABC. Tính thể tích khối tứ diện A'ABC theo a.
Cho hình chóp tứ giác đều S.ABCD có AB = a, SA = a√2 . Gọi M , N và P lần lượt là trung điểm của các cạnh SA, SB và CD. Chứng minh rằng đường thẳng MN vuông góc với đường thẳng SP. Tính theo a thể tích của khối tứ diện AMNP
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, A' là trung điểm của BC. Hình chiếu vuông góc của S lên đáy là trung điểm H của AA', cạnh bên SB tạo với đáy một góc . Tính thể tích khối chóp S.ABC và góc giữa mặt bên (SAB) với mặt đáy theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, ;CD = a góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD), tính thể tích khối chóp S.ABCD theo a.