Skip to main content

Tìm tất cả các giá trị của a để phương trình sau có 3 nghiệm thực phân biệt 2|x – a| = (x + 1)2.

Tìm tất cả các giá trị của a để phương trình sau có 3 nghiệm thực phân b

Câu hỏi

Nhận biết

Tìm tất cả các giá trị của a để phương trình sau có 3 nghiệm thực phân biệt 2|x – a| = (x + 1)2.


A.
Nghiệm của phương trình là: \begin{bmatrix}a=\frac{1}{2}\\a=-1\\a=\frac{3}{2}\end{bmatrix}
B.
Nghiệm của phương trình là: \begin{bmatrix}a=\frac{-1}{2}\\a=-1\\a=\frac{3}{2}\end{bmatrix}
C.
Nghiệm của phương trình là: \begin{bmatrix}a=\frac{1}{2}\\a=-1\\a=\frac{-3}{2}\end{bmatrix}
D.
Nghiệm của phương trình là: \begin{bmatrix}a=\frac{-1}{2}\\a=-1\\a=\frac{-3}{2}\end{bmatrix}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Phương trình: ⇔\begin{bmatrix}2(x-a)=(x+1)^{2}\\2(x-a)=-(x+1)^{2}\end{bmatrix}

\begin{bmatrix}x^{2}+1=-2a\\-x^{2}-4x-1=-2a\end{bmatrix}

Hai parabol: Y1 = x2 + 1 và Y2 = -x2 – 4x – 1 tiếp xúc nhau tại A(-1;2)

Vậy phương trình có 3 nghiệm: ⇔\begin{bmatrix}-2a=1\\-2a=2\\-2a=3\end{bmatrix}\begin{bmatrix}a=\frac{-1}{2}\\a=-1\\a=\frac{-3}{2}\end{bmatrix}

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.