Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB//CD), AB=2CD=4a, BC=a\sqrt{10}. Gọi O là giao điểm của AC và BD. Biết SO vuông góc với mặt phẳng (ABCD) và mặt bên (SAB) là tam giác đều. Tính thể tích khối chóp S.ABCD và tính cosin góc giữa hai đường thẳng SD và BC.

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB//CD), AB=2CD=4a,

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB//CD), AB=2CD=4a, BC=a\sqrt{10}. Gọi O là giao điểm của AC và BD. Biết SO vuông góc với mặt phẳng (ABCD) và mặt bên (SAB) là tam giác đều. Tính thể tích khối chóp S.ABCD và tính cosin góc giữa hai đường thẳng SD và BC.


A.
VS.ABCD=5a3.\sqrt{3} cos α=\frac{3}{5}
B.
VS.ABCD=3a3.\sqrt{2} cos α=\frac{1}{3}
C.
VS.ABCD=6a3.\sqrt{2} cos α=\frac{2}{5}
D.
VS.ABCD=a3.\sqrt{3} cos α=\frac{2}{5}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi H là hình chiếu của C trên AB; M,N là trung điểm của AB,CD. Ta có

HB=\frac{AB-CD}{2}=a => CH=3a => OM=2a,ON=a, nên tam giác OAB vuông cân. 

Suy ra OA=OB=2a\sqrt{2}. Do đó SO=OB=2a\sqrt{2}

Suy ra VS.ABCD=\frac{1}{3}.SO.SABCD=6a3.\sqrt{2}

BC//DM nên góc (SD,BC)=góc(SD,DM)=α ∈[0;\frac{\pi }{2}]

Ta có DM=BC=a\sqrt{10}, SD=\sqrt{SO^{2}+OD^{2}}=a\sqrt{10}, SM=2a\sqrt{3}

Suy ra cos\widehat{SDM}=\frac{2}{5}

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.