Skip to main content

Cho x,y,z là các số thực dương lớn hơn 1 và thỏa mãn điều kiện: xy+yz+zx≥2xyz Tìm giá trị lớn nhất của biểu thức A=(x-1)(y-1)(z-1)

Cho x,y,z là các số thực dương lớn hơn 1 và thỏa mãn điều kiện: xy+yz+zx

Câu hỏi

Nhận biết

Cho x,y,z là các số thực dương lớn hơn 1 và thỏa mãn điều kiện: xy+yz+zx≥2xyz Tìm giá trị lớn nhất của biểu thức A=(x-1)(y-1)(z-1)


A.
A max=\frac{1}{8} 
B.
A max=4
C.
A max=\frac{1}{3} 
D.
A max=8
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: xy+yz+zx≥2xyz <=> \frac{1}{x}+\frac{1}{y}+\frac{1}{z}≥2 nên

\frac{1}{x}≥1-\frac{1}{y}+1-\frac{1}{z}=\frac{y-1}{y}+\frac{z-1}{z} ≥2\sqrt{\frac{(y-1)(z-1)}{yz}}  (1)

Tương tự ta có \frac{1}{y}≥1-\frac{1}{x}+1-\frac{1}{z}=\frac{x-1}{x}+\frac{z-1}{z} ≥2\sqrt{\frac{(x-1)(z-1)}{xz}}  (2)

\frac{1}{z}≥1-\frac{1}{x}+1-\frac{1}{y}=\frac{x-1}{x}+\frac{y-1}{y} ≥2\sqrt{\frac{(x-1)(y-1)}{xy}}  (3)

Nhân vế với vê của (1), (2),(3) ta được (x-1)(y-1)(z-1)≤\frac{1}{8}

Vậy A max=\frac{1}{8} <=> x=y=z=\frac{3}{2}

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx