Skip to main content

Cho lăng trụ xiên ABCA’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ xuống mặt phẳng (ABC) trung với tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích xung quanh của hình lăng trụ, biết góc BAA’ = 450.

Cho lăng trụ xiên ABCA’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu củ

Câu hỏi

Nhận biết

Cho lăng trụ xiên ABCA’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu của A’ xuống mặt phẳng (ABC) trung với tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích xung quanh của hình lăng trụ, biết góc BAA’ = 450.


A.
Sxq = \frac{a^{2}(2+\sqrt{2})}{2}
B.
Sxq = \frac{a^{2}(2-\sqrt{2})}{2}
C.
Sxq = \frac{a^{2}(3+\sqrt{2})}{2}
D.
Sxq = \frac{a^{2}(3-\sqrt{2})}{2}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi O là đáy của ABC. Ta có: A’O ⊥ mp(ABC) mà AB ⊥ CO nên AB ⊥mp(A’CO). Gọi H là giao điểm của AB và CO thì AH ⊥AB. Suy ra góc BAA’ = 450

 => AA’ = AH√2 = \frac{a\sqrt{2}}{2}; AH = A’H =\frac{a}{2}

Do đó SBB’C’C = \frac{a^{2}}{2}. Vì AO ⊥BC nên  AA’ ⊥BC => BB’ ⊥BC => BB’C’C cũng là hình chữ nhật.

 Vậy SBB’C’C = BB’.BC = \frac{a^{2}\sqrt{2}}{2}

Sxq\frac{a^{2}(2+\sqrt{2})}{2}

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}