Skip to main content

Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

Tính tích phân I=

Câu hỏi

Nhận biết

Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx


A.
I = 3-4ln2
B.
I = 3+4ln2
C.
I = -3+4ln2
D.
I = -3-4ln2
Đáp án đúng: A

Lời giải của Luyện Tập 365

Đặt t=1+cos2x. Khi đó dt=2cosx.(-sinx)dx = -sin2xdx.

Khi x=0 thì t=2, khi x=\frac{\prod}{2} thì t=1.

Ta có I= -2\int_{0}^{\frac{\prod}{2}}cos2xln(1+cos^{2}x).(-sin2xdx)

=-2\int_{2}^{1}(2t-3)lntdt=2\int_{1}^{2}(2t-3)lntdt

Đặt u = lnt, dv = (2t-3)dt. Khi đó du=\frac{dt}{t}, v=t2-3t

Áp dụng công thức tích phân từng phần ta có 

I = 2(t2-3t)lnt\begin{vmatrix}1\\2\end{vmatrix}-2\int_{1}^{2}(t^{2}-3t)\frac{dt}{t} = -4ln2-2\int_{1}^{2}(t-3)dt

= -4ln2-2(\frac{t^{2}}{2}-3t)\begin{vmatrix}2\\1\end{vmatrix} = 3-4ln2.

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phâ

    Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phân giác trong kẻ từ cùng một đỉnh B có phương trình lần lượt là  d1: 2x + y - 3 = 0, d2: x  + y - 2 = 0. Điểm M(2;1) thuộc đường thẳng AB, đường tròn ngoại tiếp tam giác ABC có bán kính bằng √5. Biết đỉnh A có hoành độ dương, hãy xác định tọa độ các đỉnh của tam giác ABC.