Skip to main content

Trong hệ toạ độ Oxyz, cho hai đường thẳng ∆1, ∆và mặt  phẳng (α) có phương trình là  ∆1 :\left\{ \begin{array}{l} x = 2 + t\\ y = 5 + 3t\\ z = t \end{array} \right. , ∆2\frace_x - 1{1} = \frace_y + 1{1} = \frace_z + 2{2}, (α): x - y + z + 2 = 0 Viết phương trình đường thẳng đi qua giao điểm của ∆1 với (α) đồng thời cắt ∆2 và vuông góc với trục Oy.

Trong hệ toạ độ Oxyz, cho hai đường thẳng ∆1, ∆2 và mặt  phẳng (α) có phương trình

Câu hỏi

Nhận biết

Trong hệ toạ độ Oxyz, cho hai đường thẳng ∆1, ∆và mặt  phẳng (α) có phương trình là 

1 :\left\{ \begin{array}{l} x = 2 + t\\ y = 5 + 3t\\ z = t \end{array} \right. , ∆2\frace_x - 1{1} = \frace_y + 1{1} = \frace_z + 2{2},

(α): x - y + z + 2 = 0

Viết phương trình đường thẳng đi qua giao điểm của ∆1 với (α) đồng thời cắt ∆2 và vuông góc với trục Oy.


A.
\left\{ \begin{array}{l} x = 1 + 3u\\ y = 2\\ z = - 1 + 5u \end{array} \right.
B.
\left\{ \begin{array}{l} x = 1 - 3u\\ y = 2\\ z = - 1 + 5u \end{array} \right.
C.
\left\{ \begin{array}{l} x = 1 + 3u\\ y = 2\\ z = 1 + 5u \end{array} \right.
D.
\left\{ \begin{array}{l} x = 2 + 3u\\ y = 2\\ z = - 1 + 5u \end{array} \right.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Toạ độ giao điểm của (α) và ∆1 thoả mãn hệ 

\left\{ \begin{array}{l} x = 2 + t\\ y = 5 + 3t\\ z = t\\ x - y + z + 2 = 0 \end{array} \right. <=> \left\{ \begin{array}{l} t = - 1\\ x = 1\\ y = 2\\ z = - 1 \end{array} \right. => A(1; 2;-1)

Trục Oy có véc tơ chỉ phương là \overrightarrow{j} = (0; 1; 0).

Gọi d là đường thẳng qua A cắt ∆2 tại B(1 + t; -1 + t; -2 + 2t)

\overrightarrow{AB} = (t; t - 3; 2t - 1);

d ⊥ Oy <=> \overrightarrow{AB}.\vec{j} = 0 <=> t = 3 => \overrightarrow{AB} = (3; 0; 5)

Đường thẳng d đi qua A nhận \overrightarrow{AB} = (3; 0; 5)làm véc tơ chỉ phương có phương trình là  \left\{ \begin{array}{l} x = 1 + 3u\\ y = 2\\ z = - 1 + 5u \end{array} \right.

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D.