Skip to main content

Cho tam giác ABC và H là trực tâm của tam giác đó. Gọi M, N, P, Q theo thứ tự trung điểm của cạnh AC, CB, BH, HA. Trả lời câu hỏi dưới đây:Có nhận xét gì về giao điểm của (O ; r) với các đường cao của tam giác ABC. Hãy chứng minh điều nhận xét ấy

Cho tam giác ABC và H là trực tâm của tam giác đó. Gọi M, N, P, Q theo thứ tự trung điểm

Câu hỏi

Nhận biết

Cho tam giác ABC và H là trực tâm của tam giác đó. Gọi M, N, P, Q theo thứ tự trung điểm của cạnh AC, CB, BH, HA.

Trả lời câu hỏi dưới đây:

Có nhận xét gì về giao điểm của (O ; r) với các đường cao của tam giác ABC. Hãy chứng minh điều nhận xét ấy


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Đường tròn (O; OM) đi qua các trung điểm của HA, HB, HC, AB, BC, CA và các chân đường cao (đây chính là đường tròn 9 điểm của Ơ-le).

Gọi R, S tương ứng là trung điểm của HC, AB, tương tự như trên, tứ giác SMRP cũng là hình chữ nhật và R, S nằm trên (O ; OM).

Lại gọi C là chân đường cao, hạ từ C xuống AB, ta có D, E, G lần lượt nhìn các đường kính QN, MP, RS dưới một góc vuông nên cùng nằm trên (O ; OM)

Câu hỏi liên quan

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .