Skip to main content

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x -1)2 + (y + 1)2 = 25, điểm M(7; 3). Viết phương trình đường thẳng qua M cắt (C) tại hai điểm phân biệt A, B sao cho MA = 3MB.

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x -1)2 + (y + 1)2 = 25, điểm M(7; 3). Viết

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x -1)2 + (y + 1)= 25, điểm M(7; 3). Viết phương trình đường thẳng qua M cắt (C) tại hai điểm phân biệt A, B sao cho MA = 3MB.


A.
∆: y = 3;  ∆: 12x + 5y – 69 = 0
B.
∆: y = 3; ∆: 12x - 5y + 69 = 0
C.
∆: y = 3; ∆: 12x - 5y – 69 = 0
D.
∆: y= -3; ∆: 12x - 5y – 69 = 0
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đường tròn (C): I(1; -1); R = 5; MI = \sqrt{52} > 5

=> M nằm ngoài đường tròn

Ta có MA.MB = MI2 – R2 = 27 => 3MB2= 27

=> MB = 3 => MA = 9 => AB = 6

Gọi H là trung điểm AB => IH = \dpi{100} \sqrt{R^{2}-\frac{AB^{2}}{4}}= 4

Gọi đường thẳng đi qua M(7,3) có vecto pháp tuyến

\vec{n} = (A, B), (A2+ B2 ≠0) => ∆: Ax +  By – 7A - 3B = 0

Theo trên ta có: d(I, ∆)= IH = 4 ⇔ \dpi{100} \frac{|A-B-7A-3B|}{\sqrt{A^{2}+B^{2}}} = 4

⇔ 5A2 + 12AB = 0 ⇔ A = 0 hoặc A = \dpi{100} \frac{-12B}{5}

+ với A = 0 => ∆: y = 3

+ Với A = \dpi{100} \frac{-12B}{5}=> ∆: 12x - 5y – 69 = 0 .

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.