Skip to main content

Người ta sử dụng 5 cuốn sách Toán, 6 cuốn sách Vật lí, 7 cuốn sách Hóa học ( các cuốn sách cùng loại giống nhau ) để làm giải thưởng cho 9 học sinh, mỗi học sinh được hai cuốn sách khác loại. Trong số 9 học sinh trên có hai bạn Ngọc và Thảo. Tìm xác suất để hai bạn Ngọc và Thảo có giải thưởng giống nhau.

Người ta sử dụng 5 cuốn sách Toán, 6 cuốn sách Vật lí, 7 cuốn sách Hóa học ( các cuốn sách

Câu hỏi

Nhận biết

Người ta sử dụng 5 cuốn sách Toán, 6 cuốn sách Vật lí, 7 cuốn sách Hóa học ( các cuốn sách cùng loại giống nhau ) để làm giải thưởng cho 9 học sinh, mỗi học sinh được hai cuốn sách khác loại. Trong số 9 học sinh trên có hai bạn Ngọc và Thảo. Tìm xác suất để hai bạn Ngọc và Thảo có giải thưởng giống nhau.


A.
P(A) = 1/3
B.
P(A) = 5/18
C.
P(A) = 2/3
D.
P(A) = 5/16
Đáp án đúng: B

Lời giải của Luyện Tập 365

Giả sử có  x  học sinh nhận sách Toán và Vật lí

               y  học sinh nhận sách Toán và Hóa học

               z  học sinh nhận sách Vật lí và Hóa học

Ta có x + y = 5, x + z = 6, y + z = 7, x + y + z = 9  suy ra x = 2, y = 3, z = 4

Vậy chỉ có 2 học sinh nhận sách Toán và Vật lí, 3 học sinh nhận sách Toán và Hóa học, 4 học sinh nhận sách Vật lí và Hóa học.

Số khả năng chia sách cho 9 bạn là n(Ω) = $C_9^2.C_7^3.C_4^4$ = 1260

Gọi A là biến cố hai bạn Ngọc và Thảo nhận sách giống nhau, xảy ra ba khả năng:

Khả năng thứ nhất:

Hai bạn Ngọc và Thảo cùng nhận sách Toán và Vật Lí , khi đó 7 bạn còn lại có 3 bạn nhận sách Toán và Hóa; 4 bạn nhận sách Vật lí và Hóa học. Số cách phân chia là C_7^3.C_4^4 = 35

Khả năng thứ hai:

Hai bạn Ngọc và Thảo cùng nhận sách Toán và Hóa, tương tự có

 C_7^2.C_5^1.C_4^4 = 105 cách.

Khả năng thứ 3:

Hai bạn Ngọc và Thảo cùng nhận sách Lí và Hóa, tương tự có

C_7^2.C_5^3.C_2^2 = 210 cách

Suy ra P(A) = 350/1260 = 5/18

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.