Skip to main content

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = a. Góc giữa mặt bên và mặt đáy bằng 600. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, SD và BC. Tính thể tích khối tứ diện AMNP theo a.

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = a. Góc giữa mặt bên và mặt đáy bằng 600.

Câu hỏi

Nhận biết

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = a. Góc giữa mặt bên và mặt đáy bằng 600. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, SD và BC. Tính thể tích khối tứ diện AMNP theo a.


A.
VAMNP\frac{a^{3}\sqrt{3}}{48}
B.
VAMNP\frac{a^{3}\sqrt{3}}{5}
C.
VAMNP = \frac{a^{3}\sqrt{3}}{24}
D.
VAMNP = \frac{a^{3}\sqrt{3}}{36}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi O là tâm của đáy ABCD => SO ⊥ (ABCD)

Ta có OP ⊥ BC và SP ⊥ BC nên góc giữa mặt bên (SBC) và mặt đáy (ABCD) là góc \widehat{SPO} = 600

tan\widehat{SPO} = \frac{SO}{OP} => SO = OP.tan600

=> SO = \frac{a\sqrt{3}}2{}

Vì M, N là trung điểm của SA, SD nên SAMN = \frac{1}{4}.SSAD. Do đó:

VAMNP = VPAMN = \frac{1}{4}VPSAD = \frac{1}{4}VSADP

Vì P là trung điểm BC nên SADP = \frac{1}{2}SABCD 

Do đó: VAMNP = \frac{1}{8}VS.ABCD

Vậy VAMNP = \frac{1}{8}.\frac{1}{3}.SO.SABCD = \frac{1}{24}.SO.AB2\frac{a^{3}\sqrt{3}}{48}

 

 

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}