Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình  (x - 1)2 + (y - 2)2 = 4 và đường thẳng (d) có phương trình x - y + 7  = 0. Tìm trên (d) điểm M sao cho từ đó có thể kẻ được hai tiếp tuyến của (C) là MA, MB (A, B là hai tiếp điểm) sao cho độ dài AB nhỏ nhất.

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình 
(x - 1)2 + (y - 2)2

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình 

(x - 1)2 + (y - 2)2 = 4 và đường thẳng (d) có phương trình x - y + 7  = 0. Tìm trên (d) điểm M sao cho từ đó có thể kẻ được hai tiếp tuyến của (C) là MA, MB (A, B là hai tiếp điểm) sao cho độ dài AB nhỏ nhất.


A.
M(2; 5)
B.
M(-2; 5)
C.
M(-2;-5)
D.
M(-2; 15)
Đáp án đúng: B

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm I(1; 2), bán kính R = 2

Gọi H là giao điểm của IM và AB thì IM ⊥ AB và HA = HB

d(I,d) = 3√2 > R. Suy ra qua mọi M thuộc d đều kẻ được tiếp tuyến của (C)

Tam giác AIM vuông ở A có:

\frac{1}{AH^{2}} = \frac{1}{AI^{2}} + \frac{1}{AM^{2}} ⇔ \frac{4}{AB^{2}} = \frac{1}{R^{2}} + \frac{1}{IM^{2}-R^{2}}

Từ đó suy ra AB nhỏ nhất khi và chỉ khi IM nhỏ nhất, khi chỉ khi M là hình chiếu của I trên d.

M ∈ d ⇔ M(x; x + 7) => \overrightarrow{MI} = (1 - x; -5 - x)

d có véc tơ chỉ phương \overrightarrow{a} = (1; 1)

MI ⊥ d ⇔ \overrightarrow{MI}.\overrightarrow{a} = 0 ⇔ 1- x - 5 - x = 0 ⇔ x = -2 => M(-2; 5)

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.