Skip to main content

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. . Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa 2 đường thẳng AB và CB’.

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, cạnh đáy AB bằn

Câu hỏi

Nhận biết

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. . Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa 2 đường thẳng AB và CB’.


A.
V = \frac{a^{3}}{\sqrt{3}}; d(AB, CB’) \frac{a}{3}
B.
V = \frac{2a^{3}}{\sqrt{3}}; d(AB, CB’) \frac{a}{2}
C.
V = \frac{a^{3}}{\sqrt{3}}; d(AB, CB’) = a
D.
V = \frac{a^{3}}{\sqrt{3}}; d(AB, CB’) \frac{a}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi M là trung điểm của AB. Tam giác CAB cân tại C suy ra AB ⊥ CM.

Mặt khác AB ⊥ CC' => AB ⊥ (CMC') => \widehat{CMC'}= 600. Gọi V là thể tích khối lăng trụ ABC.A'B'C' thì V = SABC.CC’

Ta có CM = BM.tan30\frac{a}{\sqrt{3}} => SABC \frac{1}{2} CM.AB= \frac{a^{2}}{\sqrt{3}}

CC'= CM.tan 600\frac{a}{\sqrt{3}} . \sqrt{3} = a

=> V = \frac{a^{2}}{\sqrt{3}}.a = \frac{a^{3}}{\sqrt{3}}

Mặt phẳng (CA'B') chứa CB' và song song AB

nên d(AB, CB’) = d(AB; (CA’B’))= d(M; (CA’B’)) = MH, với N là trung điểm của A'B' và H là hình chiếu của M trên CN

Do MH ⊥ CN, MH ⊥ A'B' => MH ⊥ (CA'B')

Tam giác CMN vuông tại M nên \frac{1}{MH^{2}}= \frac{1}{MC^{2}}+ \frac{1}{MN^{2}}=\frac{4}{a^{2}}

=> d(AB,CB’) = MH = \frac{a}{2}

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx