Skip to main content

Cho x, y, z là các số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức: P=\small \frac{x^{2}y}{z^{3}}+\frac{y^{2}z}{x^{3}}+\frac{z^{2}x}{y^{3}}+\frac{4xyz}{xy^{2}+yz^{2}+zx^{2}}

Cho x, y, z là các số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

Câu hỏi

Nhận biết

Cho x, y, z là các số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức:

P=\small \frac{x^{2}y}{z^{3}}+\frac{y^{2}z}{x^{3}}+\frac{z^{2}x}{y^{3}}+\frac{4xyz}{xy^{2}+yz^{2}+zx^{2}}


A.
minP = \small \frac{16}{3}
B.
minP = 3
C.
minP = \small \frac{13}{3}
D.
minP = 4
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đặt: a=\small \frac{x}{z}; b=\small \frac{y}{x}; c=\small \frac{z}{y} => abc=1 và a+b+c ≥ 3

P=\small \frac{a^{2}}{c}+\frac{b^{2}}{a}+\frac{c^{2}}{b}+\frac{4}{ab+bc+ca}

Mà: \small a^{2}+c^{2}\geq 2ac => \small \frac{a^{2}}{c}\geq 2a-c

Tương tự: \small \frac{b^{2}}{a}\geq 2b-a ; \small \frac{c^{2}}{b}\geq 2c-b

Mặt khác: \small (a+b+c)^{2}\geq 3(ab+bc+ca)

Nên: P≥

(a+b+c) +\small \frac{12}{(a+b+c)^{2}}=\frac{4}{9}(a+b+c)+\frac{4}{9}(a+b+c)+\frac{12}{(a+b+c)^{2}}+\frac{1}{9}(a+b+c)\geq 4+\frac{1}{3}=\frac{13}{3}

Vậy minP = \small \frac{13}{3} xảy ra khi a=b=c=1 hay x=y=z

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?