Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy cho ∆ABC biết B(2; -1), đường cao qua đỉnh A có phương trình là d1: 3x – 4y + 27 = 0. Phân giác trong góc C có phương trình là d2: x + 2y - 5 = 0. Tìm tọa độ điểm A.

Trong mặt phẳng với hệ tọa độ Oxy cho ∆ABC biết B(2; -1), đường cao qua đỉnh A có phương

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy cho ∆ABC biết B(2; -1), đường cao qua đỉnh A có phương trình là d1: 3x – 4y + 27 = 0. Phân giác trong góc C có phương trình là d2: x + 2y - 5 = 0. Tìm tọa độ điểm A.


A.
A(-5; -3)
B.
A(-5; 3)
C.
A(5; 3)
D.
A(5; -3)
Đáp án đúng: B

Lời giải của Luyện Tập 365

Phương trình BC: 4x + 3y - 5 = 0, tọa độ điểm C là nghiệm của hệ 

\left\{\begin{matrix} x+2y-5=0\\ 4x+3y-5 =0 \end{matrix}\right. ⇔ C(-1; 3)

Gọi D đối xứng B qua đường phân giác trong góc C và BD cắt đường phân giác trong góc C tại E, ta có: 

phương trình BD: -2x + y + 5 = 0, tọa độ điểm E là nghiệm của hệ:\left\{\begin{matrix} x+2y-5=0\\ -2x+y+5 =0 \end{matrix}\right. ⇔ E(3; 1)

Vì E là trung điểm BD nên D(4; 3)

Vậy phương trình CA: y - 3 = 0. Tọa độ điểm A là nghiệm của hệ 

\left\{\begin{matrix} 3x-4y+27=0\\ y=3 \end{matrix}\right. ⇔ A(-5; 3)

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.