Skip to main content

Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng , hộp thứ hai chứa hai viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi , tính xác suất để hai viên bi được lấy ra có cùng màu.

Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi tr

Câu hỏi

Nhận biết

Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng , hộp thứ hai chứa hai viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi , tính xác suất để hai viên bi được lấy ra có cùng màu.


A.
Xác suất để 2 viên bi được lấy ra có cùng màu là: p = \frac{4}{21}.
B.
Xác suất để 2 viên bi được lấy ra có cùng màu là: p = \frac{10}{21}.
C.
Xác suất để 2 viên bi được lấy ra có cùng màu là: p = \frac{8}{21}.
D.
Xác suất để 2 viên bi được lấy ra có cùng màu là: p = \frac{11}{21}.
Đáp án đúng: B

Lời giải của Luyện Tập 365

Số cách chọn 2 viên bi, mỗi viên từ một hộp là : 7.6 = 42.

Số cách chọn 2 viên bi đỏ , mỗi viên từ một hộp là : 4.2 = 8.

Số cách chọn 2 viên bi trắng, mỗi viên từ một hộp là : 3.4 = 12.

Xác suất để 2 viên bi được lấy ra có cùng màu là: p = \frac{8+12}{42} = \frac{10}{21}.

 

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.