Skip to main content

Cho hình chóp S.ABCD  đáy là hình vuông cạnh 2a, tam giác SAB đều, tam giác SCD vuông cân đỉnh S. Tính thể tích khối chóp S.ABCD theo a.

Cho hình chóp S.ABCD  đáy là hình vuông cạnh 2a, tam giác SAB đều, tam giác SCD vuông cân

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD  đáy là hình vuông cạnh 2a, tam giác SAB đều, tam giác SCD vuông cân đỉnh S. Tính thể tích khối chóp S.ABCD theo a.


A.
\frac{4a^{3}\sqrt{3}}{3}
B.
a3√3   
C.
\frac{a^{3}\sqrt{3}}{3}
D.
\frac{2a^{3}\sqrt{3}}{3}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có diện tích đáy hình vuông ABCD: S = 4a2

Gọi E, F lần lượt trung điểm AB và CD 

Tam giác SAB đều nên đường cao SE = \frac{2a\sqrt{3}}{2} = a√3

Tam giác SCD vuông cân đỉnh S nên đường cao SF = a

Do đó ta có tam giác SEF vuông tại S (vì EF= SE+ SF2 )

Trong tam giác SEF kẻ SH vuông góc EF tại H 

Ta có SH vuông góc (ABCD)

\frac{1}{SH^{2}} = \frac{1}{SE^{2}} + \frac{1}{SF^{2}} = \frac{1}{3a^{2}} + \frac{1}{a^{2}} = \frac{4}{3a^{2}}

=> SH= \frac{a\sqrt{3}}{2}.Vậy  V = \frac{1}{3}S(ABCD).SH = \frac{1}{3}.4a2\frac{a\sqrt{3}}{2} = \frac{2a^{3}\sqrt{3}}{3} (đơn vị thể tích).

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.