Cho đường tròn (O; R), đường kính AB. Dây BC = R. Từ B kẻ tiếp tuyến Bx với đường tròn. Tia AC cắt Bx tại M. Gọi E là trung điểm của AC.
Trả lời câu hỏi dưới đây:
Cho tam giác ABC nhọn với . Gọi H là hình chiếu vuông góc cua A lên BC và M,N lần lượt là các điểm trên hai cạnh AB, AC. Tìm vị trí điểm M, N để tam giác HMN có chu vi nhỏ nhất.
Cho A là điểm cố định trên đường tròn (O; R). Gọi AB và AC là hai dây cung thay đổi của đường tròn (O) thỏa mãn . Xác định vị trí của B, C trên (O) để diện tích tam giác ABC lớn nhất.
Cho điểm M thuộc nửa đường tròn đường kính AB (M khác A và B). Lấy điểm I nằm giữa M và B, kẻ IH vuông góc với AB tại H. Đoạn thằng AI cắt đoạn thẳng MH tại K. Chứng minh rằng
Cho đường tròn (O), đường kính AB = 2R và một điểm M chuyển động trên nửa đường tròn đó . Vẽ đường tròn tâm E tiếp xúc với đường tròn (O) ở M và tiếp xúc với đường kính AB ở N. Đường tròn (E) cắt MA, MB lần lượt ở C và D.
Cho tam giác cân ABC, đáy BC = 6 cm, chiều cao AH = 4 cm, nội tiếp đường tròn (O).