Skip to main content

Trong mặt phẳng tọa độ Oxy, cho elip (E): \frac{x^{2}}{8}+\frac{y^{2}}{4}= 1 có các tiêu điểm F1, F2 (F1 có hoành độ âm). Đường thẳng d đi qua F2 và song song với đường phân giác của góc phần tư thứ nhất cắt (E) tại A và B. Tính diện tích tam giác ABF1.

Trong mặt phẳng tọa độ Oxy, cho elip (E):

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho elip (E): \frac{x^{2}}{8}+\frac{y^{2}}{4}= 1 có các tiêu điểm F1, F2 (F1 có hoành độ âm). Đường thẳng d đi qua F2 và song song với đường phân giác của góc phần tư thứ nhất cắt (E) tại A và B. Tính diện tích tam giác ABF1.


A.
S(ABF1) = \frac{16}{3}
B.
S(ABF1) = 4
C.
S(ABF1) = \frac{15}{3}
D.
S(ABF1) = - \frac{16}{3}
Đáp án đúng: A

Lời giải của Luyện Tập 365

(E): \frac{x^{2}}{8}+\frac{y^{2}}{4} =1 có c = \sqrt{8-4} = 2=> F1(-2; 0), F2(2; 0)

Từ giả thiết => d: y = x - 2 hay x - y - 2 = 0

Từ hệ \left\{\begin{matrix} y=x-2\\ \frac{x^{2}}{8}+\frac{y^{2}}{4}=1 \end{matrix}\right.  => A(0; -2); B(\frac{8}{3};\frac{2}{3})

SF1AB \frac{1}{2}.AB.d(F1 , AB) = \frac{1}{2}.\frac{8}{3}.√2.2√2 = \frac{16}{3}

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}