Skip to main content

Xác định m để bất phương trình sau nghiệm đúng ∀x∈ R: (6 + 2√7)x + (2 – m)(3 - √7)x – ( m + 1)2x ≥ 0.

Xác định m để bất phương trình sau nghiệm đúng ∀x∈ R: (6 + 2√7)x

Câu hỏi

Nhận biết

Xác định m để bất phương trình sau nghiệm đúng ∀x∈ R: (6 + 2√7)x + (2 – m)(3 - √7)x – ( m + 1)2x ≥ 0.


A.
m  ≤ 1 bất phương trình đã cho nghiệm đúng ∀x∈ R.
B.
m  ≤ -2 bất phương trình đã cho nghiệm đúng ∀x∈ R.
C.
m  ≤ 2 bất phương trình đã cho nghiệm đúng ∀x∈ R.
D.
m  ≤ -1 bất phương trình đã cho nghiệm đúng ∀x∈ R.
Đáp án đúng: A

Lời giải của Luyện Tập 365

(6 + 2√7)x + (2 – m)(3 - √7)x – ( m + 1)2x ≥ 0.

(3 + √7 )x.( \frac{3-\sqrt{7}}{2})x = 1 ∀x ∈ R , đặt t = ( 3 + √7)x ( t > 0)

=> (\frac{3-\sqrt{7}}{2} )x = \frac{1}{t}

Khi đó phương trình trở thành: t + ( 2 – m).\frac{1}{t} – ( m + 1) ≥ 0

 ⇔ f(t) = \frac{t^{2}-t+2}{t+1} ≥ m ∀t > 0  ⇔ \min_{(0;+\infty )} f(t) ≥ m;

f’(t) = 1 -\frac{4}{(t+1)^{2}}= 0 ⇔ \begin{bmatrix}t=1\\t=-3\end{bmatrix}

Lập bảng biến thiên ( bạn đọc tự lập) ta có \min_{(0;+\infty )}f(t) = 1

Vậy với m  ≤ 1 bất phương trình đã cho nghiệm đúng ∀x∈ R.

 

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.