Skip to main content

Viết phương trình các đường chéo hình bình hành ABCD suy ra ABCD là hình thoi.

Viết phương trình các đường chéo hình bình hành ABCD suy ra ABCD là hình thoi.

Câu hỏi

Nhận biết

Viết phương trình các đường chéo hình bình hành ABCD suy ra ABCD là hình thoi.


A.
AC: y = - x + 5; BD: y = x
B.
AC: y = x + 5; BD: y = x
C.
AC: y = - x + 5; BD: y = - x
D.
AC: y = - x - 5; BD: y = x
Đáp án đúng: A

Lời giải của Luyện Tập 365

Đồ thị của hàm số đã cho đi qua hai điểm A,C và B, D là y = ax + b.

Đi qua A(2; 3) nên 3 = 2a + b => b = 3 - 2a.

Đi qua C(3; 2) nên 2 = 3a + b => b = 2 - 3a. Vậy 3 - 2a = 2 - 3a   

=> a = -1 và b = 5

Vậy hàm số có đồ thị đi qua hai điểm A, C là y = -x + 5

Cũng chứng minh tương tự có hàm số mà đồ thị đi qua hai điểm B, D là y = x . Đường chéo AC là đồ thị hàm số y = -x + 5

Đường chéo BD là đồ thị hàm số y = x. Hệ số góc của đường thẳng AC là a = -1, hệ số góc của đường thẳng BD là a' = 1

Ta có : a.a' = -1  => AC ┴ BD. Hình bình hành ABCD có hai đường chéo vuông góc với nhau là hình thoi.

Câu hỏi liên quan

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a