Skip to main content

\frac{23-2\sqrt{19}}{3} và √27

và √27

Câu hỏi

Nhận biết

\frac{23-2\sqrt{19}}{3} và √27


A.
\frac{23-2\sqrt{19}}{3} > √27
B.
\frac{23-2\sqrt{19}}{3} < √27
C.
\frac{23-2\sqrt{19}}{3} = √27
D.
\frac{23-2\sqrt{19}}{3} =  2√27
Đáp án đúng: B

Lời giải của Luyện Tập 365

\frac{23-2\sqrt{19}}{3} < \frac{23-2\sqrt{16}}{3} = \frac{23-2.4}{}3 = 5 = √25 < √27

Vậy \frac{23-2\sqrt{19}}{3} < √27

Câu hỏi liên quan

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn A

    Rút gọn A

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.