Skip to main content

Từ P kẻ Px ┴ PA, trên Px lấy điểm I sao cho PI = R (I và O thuộc hai nửa mặt phẳng khác nhau bờ PA). Chứng minh tứ giác PIHO1 là hình bình hành

Từ P kẻ Px ┴ PA, trên Px lấy điểm I sao cho PI = R (I và O thuộc hai nửa mặt phẳng khác

Câu hỏi

Nhận biết

Từ P kẻ Px ┴ PA, trên Px lấy điểm I sao cho PI = R (I và O thuộc hai nửa mặt phẳng khác nhau bờ PA). Chứng minh tứ giác PIHO1 là hình bình hành


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tứ giác AHO1O là hình bình hành nên O1H = OA = R

Từ đó suy ra O1H // PI  và O1H = PI

Tứ giác PIHO1 là hình bình hành.

Câu hỏi liên quan

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.