Skip to main content

Tứ diện ABCD có tam giác ABC và BCD đều cạnh bằng a, góc giữa đường thẳng AD và mặt phẳng (ABC) bằng 450.  Tính thể tích khối cầu ngoại tiếp tứ diện ABCD.

Tứ diện ABCD có tam giác ABC và BCD đều cạnh bằng a, góc giữa đường thẳn

Câu hỏi

Nhận biết

Tứ diện ABCD có tam giác ABC và BCD đều cạnh bằng a, góc giữa đường thẳng AD và mặt phẳng (ABC) bằng 450.  Tính thể tích khối cầu ngoại tiếp tứ diện ABCD.


A.
V = \frac{3\pi a^{3}\sqrt{15}}{54}
B.
V = \frac{4\pi a^{3}\sqrt{15}}{54}
C.
V = \frac{5\pi a^{3}\sqrt{15}}{54}
D.
V = \frac{7\pi a^{3}\sqrt{15}}{54}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi M là trung điểm của AB thì AM = DM =\frac{a\sqrt{3}}{2} và BC ⊥ (AMD). Suy ra tâm O của hình cầu ngoại tiếp tứ diện ABCD là giao điểm của hai trục tam giác đều ABC và DBC lần lượt đi qua hai trọng tâm G1, G2 của hai tam giác đó.

Ta có OG1 = OG2 = \frac{1}{3}DM = \frac{a\sqrt{3}}{6} và AG1\frac{a\sqrt{3}}{3}

Suy ra: R = OA = \sqrt{OG_{1}^{2}+AG_{1}^{2}}= \frac{\sqrt{15}}{6}a

Vậy , V =\frac{3}{4}πR3\frac{5\pi a^{3}\sqrt{15}}{54}

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx