Skip to main content

Trong trường hợp tứ giác BICD và tứ giác AMPQ đều nội tiếp được thì tam giác ABC là tam giác gì?

Trong trường hợp tứ giác BICD và tứ giác AMPQ đều nội tiếp được thì tam giác ABC là tam

Câu hỏi

Nhận biết

Trong trường hợp tứ giác BICD và tứ giác AMPQ đều nội tiếp được thì tam giác ABC là tam giác gì?


A.
Tam giác thường
B.
Tam giác cân
C.
Tam giác đều
D.
Tam giác vuông.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Kết hợp các điều kiện trong bài 2 và bài 3 ta có AM // = BC hay BMAC là hình bình hành nội tiếp được nên là hình chữ nhật và \widehat{ACB}=90^{\circ} 

Vậy ∆ ABC vuông ở C.

Câu hỏi liên quan

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Rút gọn A

    Rút gọn A

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB