Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có trọng tâm G(4 ; 3), trung điểm của AC là M(3 ; 3), phương trình đường thẳng chứa đường cao kẻ từ C là ∆: x + y - 21 = 0. Tìm tọa độ các đỉnh của tam giác đã cho.

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có trọng tâm G(4 ; 3),

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có trọng tâm G(4 ; 3), trung điểm của AC là M(3 ; 3), phương trình đường thẳng chứa đường cao kẻ từ C là ∆: x + y - 21 = 0. Tìm tọa độ các đỉnh của tam giác đã cho.


A.
A(-3 ; -6) B(-6 ; 3) C(9 ; 12)
B.
A(-3 ; 6) B(6 ; 3) C(9 ; 12)
C.
A(-3 ; -6) B(6 ; 3) C(9 ; 12)
D.
A(-3 ; -6) B(6 ; 3) C(9 ; -12)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Vì G là trọng tâm của tam giác ABC nên

\overrightarrow{BG} = 2\overrightarrow{GM} ⇔ \left\{\begin{matrix} 4-x_{B}=2(3-4)\\3-y_{B}=2(3-3) \end{matrix}\right. ⇔ \left\{\begin{matrix} x_{B}=6\\ y_{B}=3 \end{matrix}\right. ⇒ B(6 ; 3)

Đường thẳng AB đi qua B và vuông góc với đường cao kẻ từ C nên AB: x - y - 3 = 0. Khi đó A( a ; a - 3)

Vì C ∈ ∆ ⇒ C(c ; 21 - c)

Vì M là trung điểm của AC nên

\left\{\begin{matrix} a+c=2.3\\(a-3)+(21-c)=2.3 \end{matrix}\right. ⇔ \left\{\begin{matrix} a=-3\\c=9 \end{matrix}\right.

Từ đó suy ra A(-3 ; -6), C(9 ; 12)

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.