Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có đường phân giác trong BD: x – y + 2 = 0, đường cao CH: 4x + 3y + 6 = 0. Biết rằng O là chân đường vuông góc của A lên BC. Tìm tọa độ đỉnh A.

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có đường phân giác tro

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC có đường phân giác trong BD: x – y + 2 = 0, đường cao CH: 4x + 3y + 6 = 0. Biết rằng O là chân đường vuông góc của A lên BC. Tìm tọa độ đỉnh A.


A.
A( \frac{7}{3};\frac{7}{4})
B.
A( -\frac{7}{3};\frac{7}{4})
C.
A( -\frac{7}{3};-\frac{7}{4})
D.
A( \frac{7}{3}; -\frac{7}{4})
Đáp án đúng: B

Lời giải của Luyện Tập 365

Gọi O’  là điểm đối xứng của O qua phân giác trong của B.

Khi đó O’∈AB. Ta có OO’: x + y = 0.

Gọi I là giao điểm của BD và OO’. Khi đó I( -1;1).

Vì O’ đối xứng với O qua I nên O’(-2;2).

Đường thẳng AB đi qua O’ và vuông góc với CH nên AB: 3x – 4y + 14 = 0.

Từ đó B là giao điểm của hai đường thẳng AB và BD nên B(6;8).

Đường thẳng AO đi qua O và nhận \overrightarrow{OB}(6;8) làm VTPT nên AO: 3x + 4y = 0

Từ đó suy ra A( -\frac{7}{3};\frac{7}{4})

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.