Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.


A.
N_{1}(-1;-2) và N_{2}(-4;7); M_{1}(-1;-2) vàM_{2}(\frac{22}{5};\frac{-49}{5})
B.
N_{1}(-1;2) và N_{2}(4;7);M_{1}(-1;-2) vàM_{2}(\frac{22}{5};\frac{-49}{5})
C.
N_{1}(1;-2) và N_{2}(-4;7);M_{1}(-1;-2) vàM_{2}(\frac{22}{5};\frac{-49}{5})
D.
N_{1}(-1;-2) và N_{2}(4;-7);M_{1}(-1;-2) vàM_{2}(\frac{22}{5};\frac{-49}{5})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Vì M và N đối xứng qua đường thẳng ∆2 nên phép đối xứng trục qua ∆2 biến M thành N. Vì M \epsilon (C) nên N \epsilon (C') với (C') là ảnh của đường tròn (C) qua phép đối xứng trục ∆2. Theo giả thiết N \epsilon1 nên N là giao điểm của đường tròn (C') và đường thẳng ∆1. Đường tròn (C) có tâm  I(3;-5) và bán kính R=5 nên đường tròn (C') có tâm I'(-1;3) có  bán kính R=5.

Khi đó phương trình đường tròn (C') là (C') :(x+1)^{2}+(y-3)^{2}=25

Giải hệ phương trình \left\{\begin{matrix}(x+1)^{2}+(y-3)^{2}=25\\3x+y+5=0\end{matrix}\right.

Ta được N_{1}(-1;-2) và N_{2}(-4;7)

Từ đó ta tìm được M_{1}(-1;-2)và M_{2}(\frac{22}{5};\frac{-49}{5}).

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.