Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho đường thẳng ∆: x - y = 0 và đường tròn (C): x2 + y2 + 2x – 6y + 6 = 0. Từ một điểm M bất kỳ trên ∆  kẻ hai tiếp tuyến MA, MB đến đường tròn (C) (A và B là hai tiếp điểm). Tìm M để đường thẳng AB đi qua điểm E(0; -1).

Trong mặt phẳng với hệ trục Oxy, cho đường thẳng∆: x - y = 0 và đư

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho đường thẳng ∆: x - y = 0 và đường tròn (C): x2 + y2 + 2x – 6y + 6 = 0. Từ một điểm M bất kỳ trên ∆  kẻ hai tiếp tuyến MA, MB đến đường tròn (C) (A và B là hai tiếp điểm). Tìm M để đường thẳng AB đi qua điểm E(0; -1).


A.
 M(3; -3)
B.
 M(3; -4)
C.
 M(-4; 3)
D.
 M(3; 3)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm I(-1; 3), có bán kính R = 2

Vì M  ∈  ∆ =>  M(m; m). Khi đó

 MA2 = MI2 – IA2 = (m + 1)2 + (m – 3)2 –  4 = 2m2 – 4m + 6

Do đó đường tròn tâm M bán kính  MA có phương trình 

(Cm) : (x – m)2 + (y – m)2 = 2m2 – 4m + 6

Vì A ∈ (C)  ∩ (Cm)  nên 

\left\{\begin{matrix} x^{2}_{A}+y^{2}_{A}+2x_{A}-6y_{A}+6=0(1)\\\left ( x_{A}-m \right )^{2}+\left ( y_{A}-m \right )^{2}=2m^{2}-4m+6(2) \end{matrix}\right.

Lấy (1) trừ (2) vế theo vế ta được (1 + m)xA + (m – 3)yA – 2m + 6 = 0.

Tương tự (1 + m)xB + (m – 3)yB – 2m + 6 = 0.

Từ đó suy ra phương trình đường thẳng AB là (1 + m)x + (m – 3)y – 2m + 6 = 0.

Vì E(0; -1) ∈ AB => m = 3. Vậy M(3; 3)

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.