Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho điểm A(-6;5) và hai đường thẳng ∆:3x+y+8=0,    ∆': -4x+3y+10=0. viết phương trình đường tròn có tâm thuộc đường thẳng ∆, đi qua điểm A và tiếp xúc với đường thẳng ∆'. Biết rằng tâm của đường tròn có các tọa độ là những số nguyên.

Trong mặt phẳng với hệ trục Oxy, cho điểm A(-6;5) và hai đường thẳng&nbs

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho điểm A(-6;5) và hai đường thẳng ∆:3x+y+8=0,    ∆': -4x+3y+10=0. viết phương trình đường tròn có tâm thuộc đường thẳng ∆, đi qua điểm A và tiếp xúc với đường thẳng ∆'. Biết rằng tâm của đường tròn có các tọa độ là những số nguyên.


A.
 (C): (-x+3)2+(y-1)2=5
B.
 (C): (x+3)2+(y+1)2=5
C.
 (C): (x+3)2+(y-1)2=5
D.
 (C): (x-3)2+(y-1)2=5
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi I là tâm đường tròn cần tìm.

Vì I thuộc đường thẳng ∆ nên I(m;-3m-8)

Theo giả thiết, đường tròn đi qua A và tiếp xúc với đường thẳng ∆' nên IA=d(I,∆')

⇔ (m+6)2+(3m+13)2 =\frac{(3m+14)^{2}}{25} ⇔ 81m2+1886m+4929=0       

\begin{bmatrix}m=-3\\m=-\frac{1643}{81}\end{bmatrix}

Vì tâm của đường tròn có tọa độ nguyên nên ta nhận giá trị m-=-3

Khi đó đường tròn có tâm I(-3;1), bán kính R=IA=5

Vậy (C): (x+3)2+(y-1)2=5.

 

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.