Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giácABC có A(1;1), trực tâm H(-1;3), tâm đường tròn ngoại tiếp I(3;-3). Xác định tọa độ các đỉnh B,C biết rằng xB<xC.

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giácABC có A(1;1), trực tâm H

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giácABC có A(1;1), trực tâm H(-1;3), tâm đường tròn ngoại tiếp I(3;-3). Xác định tọa độ các đỉnh B,C biết rằng xB<xC.


A.
B(-1;-5); C(5;1)
B.
B(-4;-5); C(5;4)
C.
B(4;-5); C(0;1)
D.
B(-1;-2); C(2;1)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi D là điểm đối xứng với A qua I.

Vì A(1;1), I(3;-3) nên D(5;-7)

Vì BHCD là hình bình hành nên HD và BC cắt nhau tại trung điểm mỗi đường.

Goi M là trung điểm của BC thì tọa độ M là (2;-2)

Đường thẳng BC nhận vecto pháp tuyến là \vec{IM}=(-1;1) và có phương trình là:

-x+y+4=0

Đường tròn ngoại tiếp tam giác ABC, tâm I, bán kính IA có phương trình là: 

(x-3)2+(y+3)2=20

B,C là giao điểm của đường tròn ngoại tiếp tam giác ABC và BC nên tọa độ thỏa mãn hệ phương trình:

\left\{\begin{matrix} -x+y+4=0\\(x-3)^{2}+(y+3)^{2}=20 \end{matrix}\right. => \begin{bmatrix} \left\{\begin{matrix} x=-1\\y=-5 \end{matrix}\right.\\\left\{\begin{matrix} x=5\\y=1 \end{matrix}\right. \end{bmatrix}

kết luận: B(-1;-5); C(5;1)

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).