Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(2 ; √3) và elip (E): \frac{x^{2}}{3} + \frac{y^{2}}{2} = 1. Gọi F1 và F2 là các tiêu điểm của (E) (F1có hoành độ âm); M là giao điểm có tung độ dương của đường thẳng AF1 với (E); N là điểm đối xứng của F2 qua M. Viết phương trình đường tròn ngoại tiếp tam giác ANF2.

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(2 ;√3) và elip (E):&

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(2 ; √3) và elip (E): \frac{x^{2}}{3} + \frac{y^{2}}{2} = 1. Gọi F1 và F2 là các tiêu điểm của (E) (F1có hoành độ âm); M là giao điểm có tung độ dương của đường thẳng AF1 với (E); N là điểm đối xứng của F2 qua M. Viết phương trình đường tròn ngoại tiếp tam giác ANF2.


A.
(x + 1)2 + (y + \frac{2}{\sqrt{3}})2 = \frac{4}{3}
B.
(x + 1)2 + (y - \frac{2}{\sqrt{3}})2 = \frac{4}{3}
C.
(x – 1)2 + (y + \frac{2}{\sqrt{3}})2 = \frac{4}{3}
D.
(x – 1)2 + (y - \frac{2}{\sqrt{3}})2 = \frac{4}{3}
Đáp án đúng: D

Lời giải của Luyện Tập 365

(E): \frac{x^{2}}{3} + \frac{y^{2}}{2} = 1 ⇒ c2 = a2 – b2 = 3 – 2 = 1

Do đó F1 (-1 ; 0), F2 (1 ; 0), (AF1) có phương trình x - y√3 + 1 = 0

⇒ M(1 ; \frac{2}{\sqrt{3}}) ⇒ N(1 ; \frac{4}{\sqrt{3}})

⇒ \overrightarrow{NA} = (1 ; -\frac{1}{\sqrt{3}}); \overrightarrow{F_{2}A} = (1 ; √3)

⇒ \overrightarrow{NA}.\overrightarrow{F_{2}A} = 0

⇒ ∆ANF2 vuông tại A nên đường tròn ngoại tiêp tam giác này có đường kính là F2N. Do đó đường tròn có phương trình là: (x – 1)2 + (y - \frac{2}{\sqrt{3}})2\frac{4}{3}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.