Skip to main content

Trong mặt phẳng tọa độ, giả sử điểm A biểu diễn nghiệm z1 của phương trình z2 - 6z + 45 = 0 và điểm B biểu diễn số phức z2 = -\frac{2i}{3}z1 . Chứng minh rằng tam giác OAB vuông

Trong mặt phẳng tọa độ, giả sử điểm A biểu diễn nghiệmz1

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ, giả sử điểm A biểu diễn nghiệm z1 của phương trình z2 - 6z + 45 = 0 và điểm B biểu diễn số phức z2 = -\frac{2i}{3}z1 . Chứng minh rằng tam giác OAB vuông


A.
Tam giác OAB vuông tại O nếu z = 3 + 6i
B.
Tam giác OAB vuông tại B trong mọi trường hợp
C.
Tam giác OAB vuông tại A trong mọi trường hợp
D.
Tam giác OAB vuông tại O trong mọi trường hợp
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có  z2 - 6z + 45 = 0 ⇔ [\begin{matrix} z=3+6i\\z=3-6i \end{matrix}

* Với z1 = 3 + 6i, ta có z2 = -\frac{2i}{3}(3 + 6i) = 4 - 2i.

Suy ra A(3 ; 6), B(4 ; -2). Do đó \overrightarrow{OA} = (3 ; 6), \overrightarrow{OB} = (4 ; -2)

Vì \overrightarrow{OA} . \overrightarrow{OB} = 0 nên tam giác OAB vuông tại O

* Với z1 = 3 - 6i, ta có z2 = -\frac{2i}{3}(3 - 6i) = -4 - 2i

Suy ra A(3 ; -6), B(-4 ; -2). Do đó  \overrightarrow{OA} = (3 ; -6), \overrightarrow{OB} = (-4 ; -2)

Vì  \overrightarrow{OA} . \overrightarrow{OB} = 0 nên tam giác OAB vuông tại O.

Vậy trong mọi trường hợp ta có điều phải chứng minh

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}