Skip to main content

Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng \frac{3}{2}, trọng tâm G của ∆ABC thuộc đường thẳng d: 3x - y -8 = 0. Tìm bán kính đường tròn nội tiếp ∆ABC.

Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng \frac{3}{2}, trọng tâm G của ∆ABC thuộc đường thẳng d: 3x - y -8 = 0. Tìm bán kính đường tròn nội tiếp ∆ABC.


A.
\frac{2}{\sqrt{2}+\sqrt{65}+\sqrt{89}}
B.
\frac{3}{\sqrt{2}+2\sqrt{5}}
C.
\frac{3}{\sqrt{2}+2\sqrt{5}} hoặc \frac{2}{\sqrt{2}+\sqrt{65}+\sqrt{89}}
D.
\frac{3}{\sqrt{2}+\sqrt{65}+\sqrt{89}}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Viết phương trình cạnh AB.

Ta có \overrightarrow{AB}=(1;1) => \vec{n_{AB}}(1; -1) => (AB): x - y - 5 = 0.

Gọi C(a;b) => d(C; AB)=\frac{|a-b-5|}{\sqrt{2}} =\frac{2S_{\Delta ABC}}{AB} =>|a -b - 5| = 3.

<=> \begin{bmatrix} a-b=8&(1)\\a-b=2&(2) \end{bmatrix}

Trọng tâm G \left ( \frac{a+5}{3};\frac{b-5}{3} \right )\in d nên ta có: 3\frac{(a+5)}{3}-\frac{b-5}{3}-8=0 => 3a - b = 4.  (3)

Từ (1), (3) => C(-2; 10) => r = \frac{S}{p}\frac{3}{\sqrt{2}+\sqrt{65}+\sqrt{89}}

Từ (2), (3) => C(1;-1) => r = \frac{S}{p} = \frac{3}{\sqrt{2}+2\sqrt{5}}  (với p =\frac{AB +AC+BC}{2})

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.