Skip to main content

Trong mặt phẳng hệ tọa độ Oxy cho đường tròn (C): x2+y2-2x+4y+2=0. Gọi (C’) là đường tròn có tâm I'(5;1) và cắt đường tròn (C) tại 2 điểm M,N sao cho MN=\sqrt{5}. Hãy viết phương trình của (C’)

Trong mặt phẳng hệ tọa độ Oxy cho đường tròn (C): x2+y2<

Câu hỏi

Nhận biết

Trong mặt phẳng hệ tọa độ Oxy cho đường tròn (C): x2+y2-2x+4y+2=0. Gọi (C’) là đường tròn có tâm I'(5;1) và cắt đường tròn (C) tại 2 điểm M,N sao cho MN=\sqrt{5}. Hãy viết phương trình của (C’)


A.
(C'): (x+1)2+(y-1)2=28-5\sqrt{3}
B.
(C'): (x-2)2+(y+3)2=5\sqrt{7}
C.
(C'): (x-5)2+(y-1)2=28-5\sqrt{7}
D.
(C'): (x-5)2+(y-1)2=28
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm I(1;-2), bán kính R=\sqrt{3}; đường tròn (C') có tâm I'(5;1), bán kính R'. Khi đó II'=5. Gọi M, N là giao điểm của (C) và (C')

Theo giả thiết MN=\sqrt{5}. Gọi H là giao điểm của MN và II'. Ta có MH=HN=\frac{\sqrt{5}}{2}

Trong tam giác I'MH ta có: I’H2=I’M2=R2-(\frac{\sqrt{5}}{2})^{2}=\frac{7}{4}

=> I'H=\frac{\sqrt{7}}{2} => HI'=II'-HI=5-\frac{\sqrt{7}}{2}

Suy ra: MI'= \sqrt{HI'^{2}+MH^{2}}=\sqrt{28-5\sqrt{7}}

=> (C'): (x-5)2+(y-1)2=28-5\sqrt{7}

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .